

YOUR KEY to innovation and success

High power stretched flexible hollow core fiber pulse compressor

SAVANNA-HP

CAVANNA-HP is the result of a collaboration between UltraFast Innovations (UFI°) and the Institute for Nanophotonics in Göttingen IFNANO. The stretched flexible hollow core fiber (SF-HCF) compressor spectrally broadens high-energy femtosecond input pulses by nonlinear interaction with a noble gas of adjustable gas pressure inside a hollow fiber and subsequently compresses the pulse using chirped mirror technology from UltraFast Innovations.

The state of the art SF-HCF technique from IFNANO allows nearly ideal wave guiding reducing the losses to a minimum and allows accumulation of self-phase modulation over an interaction length of up to 8 m. The incoupling is protected by a high power shield allowing extreme input parameters of few tens of mJ pulses and an average power of up to 20 W (with active cooling up to several hundred Watts). Combining the SF-HCFs from IFNANO and our chirped mirror compression, we provide an unmatched compression unit for today's state of the art lasers.

Key Product Features:

- Input pulse duration:
 <20 fs up to hundreds of fs
- Input pulse energy: up to few tens of mJ
- Typical compression factor: 5-30 x
 - Fiber transmission: close to the theoretical limit
- Fiber length: up to 8 m

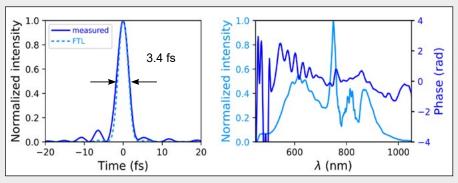
- Supported input peak power:
 Up to 400 GW at 10 W average power
 - Supported input average power: Up to several hundred Watts at 125 GW peak power
 - Active cooling for average powers > 20 W
 - Footprint: 300-1000 cm x 60 cm

Customization options:

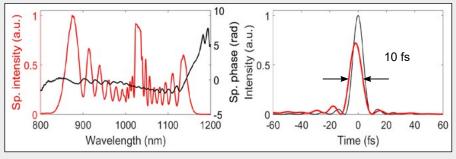
- Variable spectrum selection
- Flexible dispersion management
- Custom reflective mirror telescope with astigmatism compensation
- * In-coupling / Out-coupling chamber with Z-lock unit
- · Pressure-stabilized single / double differentially pumped setup
- · Active beam pointing stabilization unit

UltraFast Innovations GmbH Dieselstr. 5 85748 Garching Germany phone: +49 89 36039 - 437 fax: +49 89 36039 - 453 info@ultrafast-innovations.com www.ultrafast-innovations.com

Ultra-broadband Chirped Mirror Technology:


Our double-angle chirped mirrors are a key component of the hollow core fiber compressor, providing unprecedented broadband compression. Our PC70 and PC1332 mirrors have been proven to produce pulses with a duration of < 3 fs. Custom solutions for specific spectral coverage and selection are available.

SF-HCF specifications:


	Standard	Special		Complex		Custom
Max. peak power	125 GW	250 GW	125 GW	400 GW	125 GW	400 GW
Max. average power	10 W	10 W	20 W	10 W	100 W	> 100W
Max fiber length	3 m	4 m		6 m		8 m
Typical transmission*	80 %	75 %		70 %		65 %
Typical spectral broadening	15 x	20 x		30 x		45 x

 $^{^{\}star}$ at 800 nm with max length, a fiber core of 400 μm and near ideal caustic.

Temporal and spectral pulse characteristics:

Left: Retrieved temporal profile and ideal Fourier transform limited shape (FTL). Right: Fiber output spectrum supporting 2.9 fs pulses. Input: 24 fs & 10 mJ into 2.5 m fiber, reprinted/adapted from [1].

Left: Spectrum (red) after broadening in a 6 m SF-HCF fiber and phase (blue) after compression.

Right: Retrieved compressed pulse (red) and Fourier transform limited shape (black). Inset: output beam profile. Results achieved by coupling 300 fs & 580 W pulses into a 6 m fiber. Output: 318 W in compressed 10 fs pulses, reprinted/adapted from [2].

References:

- [1] M. Ouillé et. al, Relativistic-Intensity near-Single-Cycle Light Waveforms at KHz Repetition Rate, Light Sci. Appl. 9, (2020).
- [2] T. Nagy et. al, Generation of Three-Cycle Multi-Millijoule Laser Pulses at 318 W Average Power, Optica 6, (2019).